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1 Introduction

The theory of search has become a toolkit for the understanding of the role of informational imperfec-
tions in generating observed market inefficiencies. Burdett and Judd’s (1983) model of nonsequential
search is one of the seminal contributions. They show that price dispersion can arise as an equilib-
rium phenomenon in environments where firms and consumers are rational and identical. Burdett
and Judd’s model of nonsequential search has seen a number of important extensions, including, for
example, McAfee’s (1995) study of multiproduct firms, Fershtman and Fishman’s (1992) study of
price dynamics, Acemoglu and Shimer’s (2000) study of a general equilibrium labour market, and
Janssen and Moraga-González (2004) study of oligopolistic pricing. In labor economics, Burdett and
Mortensen’s (1998) model has become a canonical framework for explaining wage dispersion and
turnover.

This paper generalizes the nonsequential search model studied in Burdett and Judd (1983) to the
case in which consumers have heterogeneous search costs. We also work with the finite-number-of-
firms case, so we can study how price reponsiveness to entry depends on the shape of the search
cost distribution. While such an extension has seen applications in empirical work (cf. Hong and
Shum, 2006; and Moraga González and Wildenbeest, 2008), the existence and characterization of
price dispersed equilibria has not yet been shown. We first demonstrate that firm and consumer
optimal behavior can be integrated in such a way that the market equilibrium can be described
by an N -dimensional nonlinear system of equations. This is useful because of two reasons. First,
it provides us with a simple way to simulate the market equilibrium and, second, it enables us to
address the existence of equilibrium issue using a fixed point argument. Our main theorem shows
that an equilibrium always exists for arbitrary search cost distributions with strictly increasing cdf.
In addition, we provide a partial result on uniqueness of equilibrium.

The paper also studies how the number of firms affects equilibrium pricing. We find that the shape
of the search cost distribution is relevant. In fact, when consumers have similar search costs, mean
prices fall and consumer surplus increases in the number firms. By contrast, if search costs are
relatively dispersed across the consumer population, mean prices increase and consumer surplus may
fall as the number of firms increases.

The structure of the paper is as follows. In the next section, we present the nonsequential consumer
search model studied here. In Section 3 we discuss existence and uniqueness of a price dispersed
symmetric equilibrium. In Section 4 we present simulation results illustrating the effects of an
increase in the number of firms. All the proofs are placed in the Appendix to ease the reading.

2 The model

We examine an oligopolistic version of Burdett and Judd (1983) with consumer search cost hetero-
geneity. The details of the model follow. N firms produce a good at unit costs that we normalize
to zero.1 There is a unit mass of buyers. Each consumer inelastically demands one unit of the good
and is willing to pay for the good a maximum of v. Consumers search for prices nonsequentially and
buy from the cheapest store in their sample. Obtaining price quotations, including the first, is costly.
Search costs differ across consumers. A buyer’s search cost is drawn independently from a common

1The number of firms can be set equal to infinity in which case N should be interpreted as the maximum number
of firms a consumer can obtain price quotations from.
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atomless distribution G(c) with support (0,∞) and positive density g(c) everywhere. A consumer
with search cost c sampling k firms incurs a total search cost kc.

Firms and buyers play a simultaneous moves game. An individual firm chooses its price taking rivals’
prices as well as consumers’ search behavior as given. A firm i’s strategy is denoted by a distribution
of prices Fi(p). Let F−i(p) denote the vector of prices charged by firms other than i. The (expected)
profit to firm i from charging price pi given rivals’ strategies is denoted Π(pi, F−i(p)). Likewise,
an individual buyer takes as given firm pricing and decides on his/her optimal search strategy to
maximize his/her expected utility. The strategy of a consumer with search cost c is then a number
k of prices to sample. Let the fraction of consumers sampling k firms be denoted by µk. We shall
concentrate on symmetric Nash equilibria. A symmetric equilibrium is a distribution of prices F (p)
and a collection {µ0, µ1, . . . , µN} such that (a) Πi(p, F−i(p)) is equal to a constant Π for all p in the
support of F (p), ∀i; (b) Πi(p, F−i(p)) ≤ Π for all p, ∀i; (c) a consumer sampling k firms obtains no
lower utility than by sampling any other number of firms; and (d)

∑N
k=0 µk = 1. Let us denote the

equilibrium density of prices by f(p), with maximum price p and minimum price p.

3 Analysis

We first indicate that, for an equilibrium to exist, there must be some consumers who search just
once and others who search more than once.

Proposition 1 If a symmetric equilibrium exists, then 1 > µ1 > 0 and µk > 0 for some k =
2, 3, . . . , N .

The intuition behind this result is simple. Suppose all consumers did search at least twice; then all
firms would be subject to price comparisons with rival firms so firm pricing would be competitive.
This however is contradictory because then consumers would not be willing to search that much in
the first place. Suppose now that no consumer did compare prices; then firms would charge the
monopoly price. This is also contradictory because in that case consumers would not be willing to
search at all.2

We next observe that, given consumer behavior, for an equilibrium to exist it must be the case that
firm pricing is characterized by mixed strategies.

Proposition 2 If a symmetric equilibrium exists, F (p) must be atomless with upper bound equal to
v.

That dispersion must arise is easily understood. If a particular price is chosen with strictly positive
probability then a deviant can gain by undercutting such a price. This competition for the price-
comparing consumers cannot drive the price down zero since then a deviant would prefer to raise its
price and sell to the consumers who do not compare prices.

We now turn to consumers’ search behavior. Expenditure minimization requires a consumer with
cost c to continue to draw prices from the price distribution F (p) till the expected gains of searching
one more time fall below her search cost. The expected gains from searching k+1 prices rather than k
prices are given by E[min{p1, p2, . . . , pk+1}]−E[min{p1, p2, . . . , pk}], where E denotes the expectation
operator. These gains are strictly positive, decreasing and convergent to zero (see MacMinn, 1980).

2In the original model of Burdett and Judd (1983) the first price quotation is obtained at no cost and this implies
that there always exists an equilibrium where all firms charge the monopoly price.
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As a result, a consumer with search cost c will choose to sample k firms provided that the following
three inequalities hold:

v − E[min{p1, p2, . . . , pk}]− kc > 0;

E[min{p1, p2, . . . , pk−1}]− E[min{p1, p2, . . . , pk}] > c;

E[min{p1, p2, . . . , pk+1}]− E[min{p1, p2, . . . , pk}] < c,

Since the search cost distribution G(c) has support (0,∞) and positive density everywhere, there
exists a consumer indifferent between not searching at all and searching once. Let the search cost of
this consumer be denoted c0. Then

c0 = v − E[p], (1)

since the expected surplus for a consumer who searches one time is v − E[p]. Consumers for whom
c ≥ c0 obtain negative surplus if they search. As a result, the share of consumers who do not
participate in the market altogether is µ0 =

∫∞
c0
dG(c) > 0. Likewise, let ck be the search cost of the

consumer indifferent between searching k times and searching k + 1 times:

ck = E[min{p1, p2, . . . , pk}]− E[min{p1, p2, . . . , pk+1}], k = 1, 2, . . . , N − 1. (2)

Consumers for whom ck−1 ≤ c ≤ ck search k times. As a result µk =
∫ ck−1

ck
dG(c) > 0, k = 2, 3, . . . , N .

The following result summarizes:

Proposition 3 Given any atomless price distribution F (p), optimal consumer search behavior is
characterized as follows: consumers whose search cost c ≤ cN−1 search for N prices, consumers
whose search cost c ∈ [ck−1, ck] search for k prices, k = 1, 2, . . . , N − 1, and consumers whose search
cost c ≥ c0 stay out of the market, where ck, k = 0, 1, 2, . . . , N − 1, is given by equations (1) and (2).

Proposition 3 shows that for any given atomless price distribution optimal consumer search leads to
a unique grouping of consumers.

We now examine firm pricing behavior. Given consumer search strategies, a firm i charging pi sells
to a consumer who compares k prices whenever the price of the other k − 1 firms is higher than pi,
which happens with probability (1−F (pi))

k−1. Therefore the expected profit to firm i from charging
price pi when its rivals draw a a price from the cdf F (p) is

Πi(pi;F (p)) = pi

(
N∑
k=1

k

N
µk(1− F (pi))

k−1

)
.

In equilibrium, a firm must be indifferent between charging any price in the support of F (p) and
charging the upper bound p. Thus, any price in the support of F (p) must satisfy Πi(pi;F (p)) =
Πi(p;F (p)). Since Πi(p;F (p)) is monotonically increasing in p, it must be the case that p = v. As a
result, equilibrium requires

(pi − r)

[
N∑
k=1

kµk(1− F (pi))
k−1

]
= µ1(v − r). (3)

Unfortunately, this equation cannot be solved for F (pi) analytically (except in special cases). How-
ever, one can prove existence of an equilibrium price distribution F (pi). Let us rewrite equation (3)
as follows:

N∑
k=1

kµk(1− F (pi))
k−1 =

µ1(v − r)
(pi − r)

. (4)
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Note that the RHS of equation (4) is positive and does not depend on F (pi). By contrast, since
F (pi) must take values on [0, 1], the LHS of equation (4) is a positive-valued function that decreases
in F (pi) monotonically. At F (pi) = 0, the LHS takes on value

∑N
k=1 kµk, while at pi = v it takes on

value µ1. As a result, for every price pi ∈ (p, v), there is a unique solution to equation (4) satisfying
F (pi) ∈ [0, 1]; moreover, the solution F (pi) is monotonically increasing in pi. The following result
summarizes these findings.

Proposition 4 Given consumer search behavior {µk}Nk=0, there exists a unique symmetric equi-
librium price distribution F (p). In equilibrium firms charge prices randomly chosen from the set[
µ1(v−r)∑N
k=1 kµk

+ r, v
]

according to the price distribution defined implicitly by equation (3).

Proposition 4 shows that the equilibrium price distribution is unique for any given grouping of con-
sumers. For the price distribution in Proposition 4 to be an equilibrium of the game, the conjectured
grouping of consumers has to be the outcome of optimal consumer search. This requires that the
following system of equations holds:

µk =

∫ ck−1

ck

dG(c), for all k = 1, 2, . . . , N − 1; (5)

µN =

∫ cN−1

0
dG(c), (6)

with µ0 = 1−
∑N

k=1 µk and where c0 and ck, k = 1, 2, . . . , N − 1 are the solutions to

c0 = v − E[p]; (7)

ck = E[min{p1, p2, . . . , pk}]− E[min{p1, p2, . . . , pk+1}], k = 1, 2, . . . , N − 1, (8)

where the expectation operator is taken over the distribution of prices which solves equation (3).

Using the distributions of the order statistics, and after successively integrating by parts, we can
rewrite equations (7) and (8) as follows:

c0 =

v∫
p

F (p)dp; (9)

ck =

v∫
p

F (p)(1− F (p))kdp, k = 1, 2, . . . , N − 1. (10)

F (p) is monotonically increasing in p so we can use equation (3) to find its inverse:

p(z) =
µ1(v − r)∑N

k=1 kµk(1− z)k−1
+ r. (11)

Using this inverse function, integration by parts and the change of variables z = F (p) in equations
(9) and (10) yields:

c0 = v −
∫ 1

0
p(z)dz; (12)

ck =

1∫
0

p(z)[(k + 1)z − 1](1− z)k−1dz, k = 1, 2, . . . , N − 1. (13)

Therefore we can state that:
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Proposition 5 If a symmetric equilibrium of the game exists then consumers search according to
Proposition 3, firms set prices according to Proposition 4, and the series of critical cutoff points
{ck}N−1k=0 is given by the solution to the system of equations:

c0 = (v − r)

(
1−

∫ 1

0

G(c0)−G(c1)∑N
k=1 k[G(ck−1)−G(ck)]uk−1

du

)
; (14)

ck = (v − r)
1∫

0

[G(c0)−G(c1)]
[
kuk−1 − (k + 1)uk

]∑N
k=1 k[G(ck−1)−G(ck)]uk−1

du, k = 1, 2, ..., N − 1. (15)

This result is useful for two reasons. First, it provides a straightforward way to compute and simulate
the market equilibrium. For fixed v, r and G(c), the system of equations (14)–(15) can be solved
numerically. If a solution exists, then the consumer equilibrium is given by equations (5)–(6) and
the price distribution follows readily from equation (11). Secondly, this result enables us to address
the existence and uniqueness of equilibrium issues, which are the subject of our next statement.

Theorem 1 For any consumer valuation v and firm marginal cost r such that v > r ≥ 0 and for
any search cost distribution function G(c) with support (0,∞) such that either g(0) > 0 or g(0) = 0
and g′(0) > 0, an equilibrium exists in a market with an arbitrary number of firms N . Moreover,
when N = 2 and g′(·) ' 0, there exists a unique equilibrium.

The proof of this result, which is in the Appendix, builds on Brouwer’s fixed point theorem. To
apply the theorem, we first construct an auxiliary mapping and show that a market equilibrium is
given by a fixed point of such mapping. A difficulty we encounter in applying Brouwer’s fixed point
theorem directly is that the auxiliary mapping happens to be discontinuous at zero. This would not
be a problem if we could bound the domain of definition of the auxiliary mapping. However, it is
not possible to find a bound of the domain of definition that is appropriate for arbitrary search cost
distributions. Because of this, we modify the auxiliary mapping in the neighborhood of 0 and apply
Brouwer’s fixed point theorem to the modified auxiliary mapping.

Theorem 1 also establishes uniqueness of equilibrium when the market is operated by two firms
and the search cost distribution is uniform. General results on uniqueness prove to be very difficult
because we cannot compute the equilibrium explicitly. However, simulations of the model for different
parameters and search cost distributions suggest the uniqueness result is more general.

4 Price equilibrium and the number of firms

In this section we illustrate the importance of the shape of the search cost distribution for pricing.
In particular we focus on how entry affects pricing for different search cost distributions.3 The price
and welfare effects of entry in our model are difficult to derive analytically since the equilibrium price
distribution cannot be obtained in closed-form. We then proceed by solving the model numerically.

Consider a market where consumer valuations are identical and let v = 100; in addition, assume
that the first price quotation is obtained at no cost. These two assumptions together imply that all

3Janssen and Moraga-González (2004) study the effects of entry in a model with a two-point search cost distribution
that includes an atom of shoppers.
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consumers buy in equilibrium. This is convenient since it allows us to isolate the single mechanism
through which entry influences the aggregate outcome: the amount of search. The firms’ marginal
cost r is set equal to 50.

Let us assume that search costs follow a log-normal distribution, with parameters (νc, σc). In what
follows, we fix the mean search cost to 50 and compare how the market works for two different levels
of search cost dispersion. In particular, we focus on the effects of entry on prices and surplus and
study how these effects depend on the amount of search cost dispersion. We start with a market
where search cost dispersion is relatively low. For this we set (νc, σc) = (2.63, 1.6).4 Given the other
data, we solve for the equilibrium of the model for different number of firms. The results are reported
in Table 1.

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 N = 13
µ1 1.00 0.86 0.81 0.79 0.78 0.78 0.78 0.78 0.77 0.77 0.77 0.77
µ2 0.00 0.07 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
µ3 - 0.07 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
µ4 - - 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
µ5 - - - 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
µ6 - - - - 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01
µ7 - - - - - 0.03 0.01 0.01 0.01 0.01 0.01 0.01
µ8 - - - - - - 0.02 0.01 0.01 0.01 0.01 0.01
µ9 - - - - - - - 0.02 0.00 0.00 0.00 0.00
µ10 - - - - - - - - 0.01 0.00 0.00 0.00
µ11 - - - - - - - - - 0.01 0.00 0.00
µ12 - - - - - - - - - - 0.01 0.00
µ13 - - - - - - - - - - - 0.01

Table 1: Equilibrium search intensities for (νc, σc) = (2.63, 1.6) (mean is 50; CV is 3.45)

Table 1 shows how consumer search intensities change as we increase the number of firms. Remark-
ably, in this market a large majority of the consumers searches only once. For example, when there
are just two firms in the market the fraction of consumers who do not compare prices is almost 100%.
This number remains high but decreases as we increase the number of firms. A second important
feature is that very few consumers make an exhaustive search in the market; in fact for example if
there are 10 firms in the industry about 94% of the consumers searches for a maximum of 4 firms.

<insert figure 1 about here>

The fact that most consumers do not compare prices is reflected in equilibrium prices. Figure 1(a)
shows how mean prices change with the number of firms. The average price under duopoly is very
high and it decreases as the number of firms rises. The decrease of the mean price is due to the fact
that the share of consumers comparing two or three prices increases in the number of firms. The
average price is what is important for consumers who do not exercise price comparisons so consumers
benefit from the resulting average price decreases. These gains are also reflected in that consumer
surplus, plotted in Figure 1(b), increases in N . Figures 1(c) and 1(d) show the behavior of aggregate
profits and social welfare. The welfare result is perhaps surprising and it deserves an explanation.
Note from Table 1 that the amount of search increases in N and that, since search costs are wasteful,
more search generates a welfare loss. In sum, entry in this case of low search cost dispersion would
lead to lower average prices, higher consumer surplus, lower industry profits and higher welfare.

4Mean search cost is equal to eν+σ
2/2 ' 50 and standard deviation

√
(eσ2 −1) e2ν+σ2 ' 172.74.
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The situation is quite different when search costs are much more dispersed, holding everything else
equal. Let us set (νc, σc) = (0.79, 2.5), which implies the new search cost distribution is a mean-
preserving spread of the previous one. The new equilibrium search intensities are reported in Table
2. What is different in this case of high search cost dispersion is that a great deal of consumers
conduct an exhaustive search; as before, the extent of price comparison in the market increases as
the number of firms rises.

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 N = 13
µ1 0.37 0.32 0.30 0.30 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29
µ2 0.63 0.14 0.12 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10
µ3 - 0.54 0.10 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08
µ4 - - 0.47 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07
µ5 - - - 0.42 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
µ6 - - - - 0.37 0.05 0.05 0.05 0.05 0.05 0.05 0.05
µ7 - - - - - 0.33 0.04 0.04 0.04 0.04 0.04 0.04
µ8 - - - - - - 0.30 0.04 0.04 0.04 0.04 0.03
µ9 - - - - - - - 0.27 0.03 0.03 0.03 0.03
µ10 - - - - - - - - 0.25 0.03 0.03 0.03
µ11 - - - - - - - - - 0.22 0.02 0.02
µ12 - - - - - - - - - - 0.21 0.02
µ13 - - - - - - - - - - - 0.19

Table 2: Equilibrium search intensities for (νc, σc) = (0.79, 2.5) (mean is 50; CV is 22.73)

Figure 2 plots the equilibrium mean price against the number of competitors in the industry. Under
duopoly, the average price is relatively low compared to the previous case. What is remarkably
different is that the mean price increases as more firms enter the industry. Moreover, we see that
consumer surplus can decrease and profits increase as we the number of competitors goes up. The
crucial distinction between this case and the previous one is the equilibrium consumer search intensity.
Table 2 shows that most of the consumers (more than 63%) exercise price comparisons in this case
while Table 1 showed the opposite evidence. Consumers who conduct an exhaustive search in the
market become disproportionately less attractive for a firm as more competitors are around. This
effect, which leads to higher prices, has here a dominating influence and results in lower consumer
surplus and greater industry profits. Welfare is again decreasing in N due to the rise of actually
incurred search costs.

<insert figure 2 about here>

In summary, this section shows that entry can lead to an increase or to a decrease in average prices
and that the direction of the effect depends on the extent of search frictions in the market.
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Appendix
Proof of Proposition 1. First, suppose, on the contrary, that µ1 = 0. Then we have two possibili-
ties: (i) either µ0 = 1 in which case the market does not open, or (ii) µk > 0 for some k = 2, 3, . . . , N
in which case all firms would charge a price equal to the marginal cost r. But if this were so, con-
sumers would gain by deviating and searching less. Second, suppose, on the contrary, that µ1 = 1.
Then firms prices would be equal to the monopoly price v. But if this were so then consumers would
gain by deviating and exiting the market. Finally, suppose, on the contrary, that 1 > µ1 > 0 and
that µk = 0 for all k = 2, 3, . . . , N . Then µ0 + µ1 = 1 and the argument applied before would hold
here too; as a result, there must be some k ≥ 2 for which µk > 0. �

Proof of Proposition 2. Suppose, on the contrary, that firms did charge a price p̂ ∈ (r, v] with
strictly positive probability in equilibrium. Consider a firm i charging p̂. The probability that p̂ is
the only price in the market is strictly positive. This occurs when all other firms are charging p̂.
From Proposition 1 we know that in equilibrium there exists some k̂ ≥ 2 for which µk̂ > 0. Consider

the fraction of consumers sampling k̂ firms. The probability that these consumers are sampling firm
i is strictly positive; as a result, firm i would gain by deviating and charging p̂− ε since in that case
the firm would attract all consumers in µk̂ who happened to sample firm i. This deviation would
give firm i a discrete increase in its profits and thus rules out all atoms in the set (r, v]. It remains
to be proven that an atom at the marginal cost r cannot be part of an equilibrium either. Consider
a firm charging r. From Proposition 1 we know that 1 > µ1 > 0. As a result, this firm would serve
a fraction of consumers at least as large as µ1/N but obtain zero profits. This implies that the firm
would have an incentive to deviate by increasing its price. We now prove that the upper bound of
F (p) must be equal to v. Suppose not and consider a firm charging an upper bound p < v. Since
this firm would not sell to any consumer who compares prices, its payoff would simply be equal
to (p − r)µ1/N , which is strictly increasing in p; as a result the firm would gain by deviating and
charging v. �

Proof of Theorem 1. Let θ := v − r and consider the change of variables xk := G (ck). Then we
can rewrite the equations describing the equilibrium (14)-(15) as

x0 = G

(
θ − θ

∫ 1

0

x0 − x1∑N
h=1 h (xh−1 − xh)uh−1

du

)
;

xk = G

(
θ

∫ 1

0

x0 − x1∑N
h=1 h (xh−1 − xh)uh−1

[
kuk−1 − (k + 1)uk

]
du

)
, k = 1, 2, . . . , N − 1, (xN = 0) .

Since x0 = G(c0) > 0 in any interesting market equilibrium, we can define yk = xk
x0

. Then the
solution of this system will be

x0 = G

(
θ − θ

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)
,

x1 = x0y1, . . . , xN−1 = x0yN−1,

if y = (y1, y2, . . . , yN−1) is the solution of the following system of equations:

yk =

G

(
θ
∫ 1
0

(1− y1)
[
kuk−1 − (k + 1)uk

]
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)

G

(
θ − θ

∫ 1
0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

) , k = 1, 2, . . . , N − 1, (yN = 0) . (16)
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We are looking for a solution of this latter system in [0, 1]N−1 for which y1 ≥ y2 ≥ . . . ≥ yN−1. For
this purpose, we define the set Y = {(y1, y2, . . . , yN−1) ∈ [0, 1]N−1 : y1 ≥ y2 ≥ . . . ≥ yN−1}. Likewise,
define the function H = (H1, . . . ,HN−1) : Y \ {0} → RN−1 with

Hk (y) =

G

(
θ
∫ 1
0

(1− y1)
[
kuk−1 − (k + 1)uk

]
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)

G

(
θ − θ

∫ 1
0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

) , k = 1, 2, . . . , N − 1, (yN = 0) .

Then the solution of the system (16) is a fixed point of H. In what follows we apply Brouwer’s
theorem to show that the function H has a fixed point.

First we show that the function H takes values in the set Y . This is intuitively clear based on
the properties of the model since by appropriate transformations it is equivalent to the inequalities
c0 ≥ c1 ≥ . . . ≥ cN−1. Here we provide a direct proof.

Lemma 1 The function H(·) takes values in Y .

Proof. Take an arbitrary y ∈ Y \{0}. We need to prove that 0 ≤ Hk (y) ≤ 1 for all k = 1, 2, . . . , N−1
and Hk (y) ≤ Hk−1 (y) for all k = 2, . . . , N − 1. The inequality 0 ≤ Hk (y) follows straightforwardly
from the nonnegativity of G. In order to prove Hk (y) ≤ 1 and Hk (y) ≤ Hk−1 (y) we use integration
by parts. First we observe that∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du =

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh) (1− u)h−1

du.

By integration by parts∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh) (1− u)h−1

du

= 1−
∫ 1

0

(1− y1)u
[∑N

h=2 h (h− 1) (yh−1 − yh) (1− u)h−2
]

(
1− y1 +

∑N
h=2 h (yh−1 − yh) (1− u)h−1

)2 du.

So the argument of G in the denominator is proportional to

1−
∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

=

∫ 1

0

(1− y1)u
[∑N

h=2 h (h− 1) (yh−1 − yh)uh−2
]

(
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

)2 du.

The argument of G in the numerator of Hk(·) is proportional to∫ 1

0

(1− y1)
[
kuk−1 − (k + 1)uk

]
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

=

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

d
(
uk − uk+1

)

=

∫ 1

0

(1− y1)uk (1− u)
[∑N

h=2 h (h− 1) (yh−1 − yh)uh−2
]

(
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

)2 du.
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The inequality Hk(y) ≤ 1 follows from the fact that u ≥ uk(1 − u) while the inequalities Hk(y) ≤
Hk−1(y), k = 2, 3, . . . , N−1 follow because all terms in the expressions of the integrals are nonnegative
and uk is decreasing in k. �

We now apply Brouwer’s fixed point theorem to prove a fixed point ofH exists. Since the denominator
of Hk is 0 for y = 0, we need to modify the function H in the neighborhood of 0. We do this in three
steps: (i) We first prove that the limit inferior of H when y → 0 is strictly positive (Proposition 6).
(ii) We then construct a neighborhood V of 0 such that H is continuously extendable from Y \V to
Y such that the extended function has no fixed point in V (Lemma 3, Lemma 4). (iii) Finally, we
apply Brouwer’s fixed point theorem to the extended function to establish the existence of a solution
of the system (16).

We start by showing that the limit inferior of H is strictly positive. Since Hk(y) ≤ Hk−1(y),
k = 2, 3, . . . , N − 1, is is sufficient to study the limit inferior of H1.

Proposition 6 lim infy→0
y∈Y

H1 (y) ≥


1
3 if g (0) > 0,

1
9 if g (0) = 0 and g′ (0) > 0.

Proof. By definition lim infy→0
y∈Y

H1 (y) = lim
ε→0

inf {H1 (y) : y ∈ Y ∩B (0, ε) \ {0}}, where B (0, ε) ={
x ∈ RN−1 : ‖x‖ < ε

}
. By Lemma 2 below there exists an ε > 0 such that H1 (y) is increasing in yk

for k = 2, . . . , N − 1 on Y ∩B (0, ε) \ {0}. This implies that for any y ∈ Y ∩B (0, ε) \ {0} such that
y1 > 0

H1 (y1, y2, . . . , yN−1) ≥ H1 (y1, y2, . . . , yN−2, 0) ≥ H1 (y1, y2, . . . , 0, 0) ≥ . . . ≥ H1 (y1, 0, . . . , 0)

=
G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
)

G
(
θ − θ

∫ 1
0

1−y1
1−y1+2y1u

du
) .

Therefore,

lim inf
y→0
y∈Y

H1 (y) ≥ lim
ε→0

inf

 G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
)

G
(
θ − θ

∫ 1
0

1−y1
1−y1+2y1u

du
) : 0 < y1 < ε

 .

The limit on the right hand side is by definition the limit inferior of
G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
)

G
(
θ−θ

∫ 1
0

1−y1
1−y1+2y1u

du
) when

y1 → 0, y1 > 0. We show that this limit inferior is just equal to the limit, due to the fact that the
limit exists. Indeed, we can apply the l’Hôpital rule to obtain

lim
y1→0
y1>0

G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
)

G
(
θ − θ

∫ 1
0

1−y1
1−y1+2y1u

du
) = lim

y1→0
y1>0

−
g
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
) ∫ 1

0
u(1−2u)

(1−y1+2y1u)
2du

g
(
θ − θ

∫ 1
0

1−y1
1−y1+2y1u

du
) ∫ 1

0
u

(1−y1+2y1u)
2du

. (17)

If g (0) > 0 then this limit is further equal to

−
g
(
θ
∫ 1
0 (1− 2u) du

) ∫ 1
0 u (1− 2u) du

g
(
θ − θ

∫ 1
0 du

) ∫ 1
0 udu

= −
g (0)

∫ 1
0 u (1− 2u) du

g (0)
∫ 1
0 udu

= −
∫ 1
0 u (1− 2u) du∫ 1

0 udu
=

1

3
.
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If g (0) = 0 and g′ (0) > 0 then the limit (17) is equal to the limit of

−
g′
(
θ
∫ 1
0

(1−y1)(1−2u)du
1−y1+2y1u

)
θ
∫ 1
0
−2u(1−2u)du
(1−y1+2y1u)

2

∫ 1
0

u(1−2u)du
(1−y1+2y1u)

2 + g
(
θ
∫ 1
0

(1−y1)(1−2u)du
1−y1+2y1u

) ∫ 1
0

2u(1−2u)2du
(2uy1−y1+1)3

g′
(
θ − θ

∫ 1
0

(1−y1)du
1−y1+2y1u

) ∫ 1
0

(−θ)(−2u)du
(1−y1+2y1u)

2

∫ 1
0

udu
(1−y1+2y1u)

2 + g
(
θ − θ

∫ 1
0

(1−y1)du
1−y1+2y1u

) ∫ 1
0

2u(1−2u)du
(2uy1−y1+1)3

= −
g′ (0) θ

∫ 1
0 (−2u) (1− 2u) du

∫ 1
0 u (1− 2u) du+ g (0)

∫ 1
0 2u (1− 2u)2 du

g′ (0) (−θ)
∫ 1
0 (−2u) du

∫ 1
0 udu+ g (0)

∫ 1
0 2u (1− 2u) du

=

∫ 1
0 (−2u) (1− 2u) du

∫ 1
0 u (1− 2u) du∫ 1

0 (−2u) du
∫ 1
0 udu

=
1

9
.

�

Lemma 2 There exists an ε > 0 such that H1 (y) is increasing in yk for k = 2, . . . , N − 1 on
Y ∩B (0, ε) \ {0}.

Proof. For simplicity of notation we use

H1 (y) =
U (y)

D (y)
,

where U,D : Y → R

U (y) = G

(
θ

∫ 1

0

(1− y1) (1− 2u)

1− y1 +
∑N

h=2 h (yh−1 − yh)uh−1
du

)
,

D (y) = G

(
θ − θ

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)
.

The partial derivatives of U and D with respect to yk for some k ∈ {2, . . . , N − 1} are

∂U

∂yk
= g

(
θ

∫ 1

0

(1− y1) (1− 2u)

1− y1 +
∑N

h=2 h (yh−1 − yh)uh−1
du

)
θIU (y) ,

∂D

∂yk
= g

(
θ − θ

∫ 1

0

1− y1
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

du

)
(−θ) ID (y) ,

where

IU (y) =

∫ 1

0

(1− y1) (1− 2u)
[
kuk−1 − (k + 1)uk

](
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

)2 du,
ID (y) =

∫ 1

0

(1− y1)
[
kuk−1 − (k + 1)uk

](
1− y1 +

∑N
h=2 h (yh−1 − yh)uh−1

)2du.
By integration by parts

ID (y) = 2

∫ 1

0
(1− y1)

(
uk − uk+1

) ∑N
h=2 h (h− 1) (yh−1 − yh)uh−2(

1− y1 +
∑N

h=2 h (yh−1 − yh)uh−1
)3du.
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Now, ID ≥ 0 for any y ∈ Y because all terms in the integral are nonnegative. Therefore ∂D
∂yk
≤ 0 for

any y ∈ Y , which implies that D is decreasing in yk at any point y ∈ Y .
Regarding the integral IU we note that

IU (0) =

∫ 1

0
(1− 2u)

[
kuk−1 − (k + 1)uk

]
du =

2

(k + 1) (k + 2)
> 0.

So for each k there is an εk > 0 such that IU (y) ≥ 0 for any y ∈ Y ∩ B (0, εk); so for ε =
min {ε2, . . . , εN−1} it holds that IU (y) ≥ 0 for any y ∈ Y ∩ B (0, ε). Therefore ∂U

∂yk
≥ 0 for any

y ∈ Y ∩B (0, ε) and k = 2, . . . , N −1. This implies that U is increasing in yk for any y ∈ Y ∩B (0, ε).
This establishes that H1 (y) is increasing in yk for any y ∈ Y ∩B (0, ε) \ {0}. �

So we have established that the limit inferior of H1 (y) when y → 0 is strictly positive. Then the
following statement establishes that there is an ε > 0 such that the set Y ∩ [0, ε]N−1 can take the
role of the neighborhood V mentioned above.

Lemma 3 Let H : Y \ {0} → RN−1 be a continuous function such that lim infy→0
y∈Y

H1 (y) ≥ a > 0.

Then there exists ε > 0 such that H1 (y) > ε for any y = (y1, y2, . . . , yN−1) ∈ Y \ {0} with y1 ≤ ε.

Proof. Condition lim infy→0
y∈Y

H1 (y) ≥ a > 0 implies that for any δ > 0 there exists εδ > 0 such that

H1 (y) > a−δ for any y = (y1, y2, . . . , yN−1) ∈ Y \{0} with y1 ≤ εδ. Take δ1 > 0 such that a−δ1 > 0.
Then there exists ε1 > 0 such that H1 (y) > a − δ1 for any y = (y1, y2, . . . , yN−1) ∈ Y \ {0} with
y1 ≤ ε1. Now, if a− δ1 > ε1 then choose ε = ε1 and the result is proved. If a− δ1 ≤ ε1 then choose
ε > 0 such that a− δ1 > ε. For any y = (y1, y2, . . . , yN−1) ∈ Y \ {0} with y1 ≤ ε < ε1 it holds that
H1 (y) > a− δ1 > ε, so in this case the result is proved as well. �

Since we established condition lim infy→0
y∈Y

H1 (y) ≥ a > 0 in Proposition 6 we can now use ε from

Lemma 3. Define the function J = (J1, . . . , JN−1) : Y → RN−1 such that

J (y) =


H (y) for y ∈ Y \ Yε,

H (ε, y2, . . . , yN−1) for y ∈ Yε,

where Yε = {(y1, y2, . . . , yN−1) ∈ Y : y1 ≤ ε} = Y ∩ [0, ε]N−1. Notice that J is also defined in 0.

Lemma 4 The function J has the properties: (i) J is continuous. (ii) J takes values in Y . (iii) J
has no fixed point in Yε.

Proof. (i) Based on the fact that H is continuous, J is also continuous at points y that are not
on the boundary between Yε and Y \ Yε. The only non-trivial case is when y is on the boundary
between Yε and Y \ Yε, that is, in {(y1, y2, . . . , yN−1) ∈ Y : y1 = ε}. In this case the limit of J (tn)
for a sequence (tn)n≥1 ⊂ {(y1, y2, . . . , yN−1) ∈ Y : y1 > ε} with tn → y should be J (y). Indeed,
J (tn) = H (tn)→ H (y) = H (ε, y2, . . . , yN−1) = J (y).

(ii) The fact that J takes values in Y follows from Lemma 1 trivially for the case (y1, y2, . . . , yN−1) ∈
Y \ Yε. For the case (y1, y2, . . . , yN−1) ∈ Yε it follows because (ε, y2, . . . , yN−1) ∈ Y for any
(y1, y2, . . . , yN−1) ∈ Yε, so J (ε, y2, . . . , yN−1) = H (ε, y2, . . . , yN−1) ∈ Y .
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(iii) For an arbitrary (y1, y2, . . . , yN−1) ∈ Yε we have J1 (y1, y2, . . . , yN−1) = H1 (ε, y2, . . . , yN−1).
Since y = (ε, y2, . . . , yN−1) ∈ Y \{0} with y1 ≤ ε, by Lemma 3 it holds that H1 (ε, y2, . . . , yN−1) > ε.
Thus J1 (y1, y2, . . . , yN−1) > ε ≥ y1, so (y1, y2, . . . , yN−1) cannot be a fixed point of J . �

Finally we can establish that the system of equations (16) has a solution. By Lemma 4 the function
J : Y → Y is continuous. Y is a convex and compact set, so by Brouwer’s fixed point theorem
J has a fixed point y∗. The fixed point cannot be in Yε by Lemma 4, so y∗ ∈ Y \ Yε. Therefore
y∗ = J (y∗) = H (y∗), that is, y∗ ∈ Y \ Yε is a fixed point of H. By definition, any fixed point of H
is a solution of the system (16). This completes the proof of existence of equilibrium in Theorem 1.

We now prove the part on uniqueness of equilibrium. Setting N = 2 in equations (16) gives

x0 = G

(
θ − θ

∫ 1

0

x0 − x1
x0 − x1 + 2x1u

du

)
;

x1 = G

(
θ

∫ 1

0

(x0 − x1) (1− 2u)

x0 − x1 + 2x1u
du

)
.

Using the notation introduced before, y1 = x1/x0 ∈ (0, 1), the solution to this system of equations
is given by the solution to H1(y1)− y1 = 0, or

φ (y1) ≡ y1G (θ − θ (1− y1) I(y1))−G (θ (1− y1) J(y1)) = 0.

where

I(y1) =

∫ 1

0

1

1− y1 + 2y1u
du =

log (1 + y1)− log (1− y1)
2y1

;

J(y1) =

∫ 1

0

1− 2u

1− y1 + 2y1u
du =

log (1 + y1)− log (1− y1)− 2y1
2y21

.

The derivations above in the proof of Proposition A.1 can readily be used to show that limy1→1
y1>0

φ (y1) =

G (θ) > 0, limy1→0
y1>0

φ (y1) = 0 and limy1→0
y1>0

φ′ (y1) < 0. Therefore, if the function φ (y1) is strictly con-

vex, the equilibrium is unique. Let us now examine the second derivative of the function φ (y1). First
we have

φ′(y1) = G (θ − θ(1− y1)I(y1)) + y1g (θ − θ(1− y1)I(y1))
d (−θ(1− y1)I(y1))

dy1

− g (θ(1− y1)J(y1))
d(θ(1− y1)J(y1))

dy1

and then

φ′′(y1) = 2g (θ − θ(1− y1)I(y1))
d (−θ(1− y1)I(y1))

dy1
+ y1g (θ − θ(1− y1)I(y1))

d2 (−θ(1− y1)I(y1))

dy21

+ y1g
′ (θ − θ(1− y1)I(y1))

(
d (−θ(1− y1)I(y1))

dy1

)2

− g′ (θ(1− y1)J(y1))

(
d((1− y1)J(y1))

dy1

)2

− g (θ(1− y1)J(y1))

(
d2(θ(1− y1)J(y1))

dy21

)
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When g′(·) = 0, this simplifies to

φ′′(y1) = g (θ − θ(1− y1)I(y1))

(
2
d (−θ(1− y1)I(y1))

dy1
+ y1

d2 (−θ(1− y1)I(y1))

dy21

)
− g (θ(1− y1)J(y1))

(
d2(θ(1− y1)J(y1))

dy21

)
Notice that

d (−θ(1− y1)I(y1))

dy1
= θ

log
[
1+y1
1−y1

]
− 2y1

1+y1

2y21

d2 (−θ(1− y1)I(y1))

dy21
= −θ

log
[
1+y1
1−y1

]
+

2y1(y21−y1−1)
(1+y1)2(1−y1)

y31

So

2
d (−θ(1− y1)I(y1))

dy1
+ y1

d2 (−θ(1− y1)I(y1))

dy21
=

2θ

(1− y1)(1 + y1)2
> 0 for all y1

Finally

d (−θ(1− y1)J(y1))

dy1
= θ

2y1(2+y1)
1+y1

− (2− y1) log
[
1+y1
1−y1

]
2y31

So

d2 (−θ(1− y1)J(y1))

dy21
= θ

−2y1(3+2y1−3y21−y31)
(1−y1)(1+y1)2 + (3− y1) log

[
1+y1
1−y1

]
y41

< 0 for all y1

Therefore we conclude that φ(y1) is strictly convex so the equilibrium is unique.
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(a) Mean prices (b) Consumer surplus

(c) Producer surplus (d) Welfare

Figure 1: Comparative statics of an increase in the number of firms ((νc, σc) = (2.63, 1.6))
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(a) Mean prices (b) Consumer surplus

(c) Producer surplus (d) Welfare

Figure 2: Comparative statics of an increase in the number of firms (νc = 0.79, σc = 2.5)
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