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Abstract

This paper (1) presents a general model of online price competition, (2) shows how to
structurally estimate the underlying parameters of the model when the number of competing
�rms is unknown or in dispute, (3) estimates these parameters based on UK data for personal
digital assistants, and (4) uses these estimates to simulate the competitive e¤ects of horizontal
mergers. Our results suggest that competitive e¤ects in this online market are more closely
aligned with the simple homogeneous product Bertrand model than might be expected given
the observed price dispersion and number of �rms. Our estimates indicate that so long as two
�rms remain in the market post merger, the average transaction price is roughly una¤ected by
horizontal mergers. However, there are potential distributional e¤ects; our estimates indicate
that a three-to-two merger raises the average transaction price paid by price sensitive �shop-
pers�by 2.88 percent, while lowering the average transaction price paid by consumers �loyal�
to a particular �rm by 1.37 percent.
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1 Introduction

Empirical competitive e¤ects analysis is a fundamental tool for assessing the impact of

horizontal mergers on consumer welfare.1 Frequently, such analysis is used to �rationalize�

de�nitions of relevant antitrust markets that outside observers sometimes view as being too

narrow. For example, in FTC v. Staples-O¢ ce Depot, the FTC de�ned a �narrow�relevant

product market that included only o¢ ce superstores (Staples, O¢ ce Depot, and O¢ ce Max),

while the merging parties argued that the relevant product market included a number of

other retail outlets (including Walmart) that also sold o¢ ce supplies. Ultimately, Judge

Hogan agreed with the narrow de�nition advanced by the FTC based in part on empirical

evidence that Staples and O¢ ce Depot charged signi�cantly lower prices in markets where

they competed head-to-head compared to markets where the only competitors were non-

superstore players such as Walmart. Judge Hogan�s decision ultimately blocked the merger

because of empirical competitive e¤ects analysis indicating that prices would rise as a result

of the merger.

Virtually identical economic issues arose in the recent Whole Foods-Wild Oats matter,

where the FTC argued that �premium natural organic supermarkets�are a separate prod-

uct market that excludes traditional supermarkets. While the FTC initially lost in District

Court, an appeal ultimately led to a consent agreement in which Whole Foods agreed to

divest 32 stores. These examples illustrate the controversial nature of and economic chal-

lenges associated with market de�nition and competitive e¤ects analysis in even fairly simple

brick-and-mortar retail environments.

The present paper is motivated by our view that new-economy e-retail markets further

complicate market de�nition and competitive e¤ects analysis in horizontal mergers. One

complication is the question of the relevant number of competitors, including whether online

and traditional retailers selling similar products are in the same product market. Unfor-

1Antitrust enforcement in the UK, US, and virtually all other jurisdictions (except Canada) are based on
a consumer welfare standard rather than a total welfare standard.
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tunately, this analysis requires fairly detailed information; antitrust agencies (and private

parties) expend considerable resources to obtain (or to comply with requests for) these data.

In a number of instances, agencies have concluded that online and o­ ine markets are sepa-

rate antitrust markets based on these data. For instance, on 13 February 2008 the Australian

Competition and Consumer Commission concluded that online and o­ ine markets for books

were separate antitrust markets.2 Likewise, Christie and Terry (2002) suggest that in the

FTC�s review of a merger between Monster.com and HotJobs.com, the FTC �...determined

that the �relevant market�within which to evaluate the competitive impact of the transaction

included only online job services,� and that �...FTC sta¤ appears to have concluded that

bricks (traditional methods) do not su¢ ciently compete with clicks (online methods), so as

to be in the same relevant market, at least in some instances.�

Even in environments where the online channel comprises a separate relevant antitrust

market, to the best of our knowledge there are no ready tools available to assess potential

competitive e¤ects of mergers involving online retailers. The absence of such tools or analyses

stems, in part, from the fact that (1) e-retail sales are still relatively modest; (2) online

prices display considerable price dispersion, which substantially complicates predicting the

price e¤ects of mergers; and (3) the number of (potential) competitors in the online channel

is typically an unknown. Finally, as is the case in traditional markets, (4) there are a

variety of models one might reasonably use to assess competitive e¤ects, and it is known

that competitive e¤ects analysis can be sensitive to the model.3

This paper represents a �rst attempt to empirically examine the competitive e¤ects of

horizontal mergers in an online retail market. We stress at the outset that, like the early

literature on mergers in traditional markets that heavily relied on implications of the sym-

2See Australian Competition and Consumer Commission (2008).
3For instance, it is well-known that the competitive e¤ects of horizontal mergers in traditional markets

depend not only on the number of �rms and whether they are symmetric, but whether the relevant oligopoly
model is Cournot, Bertrand, or Hotelling. Even for a given market model, merger simulation results fre-
quently reveal that competitive e¤ects are sensitive to the assumed functional form for demand. See Weinberg
and Hosken (2009).
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metric Cournot model, our framework is best viewed as a �benchmark� that is based on

stylized assumptions about the nature of online competition. These assumptions, which are

discussed in more detail in the next section, include (1) online �rms are symmetric, pure-play

e-retailers; (2) the number of (potential) online competitors at any point in time is known

to �rms but not to the econometrician; and (3) online buyers may be segmented into two

types: price sensitive �shoppers,�who rely on a price comparison site to �nd the best deal,

and price insensitive �loyals,�who simply visit their preferred online �rm�s website. This

benchmark environment is the standard framework for modeling e-retail competition; see

Baye, Morgan, and Scholten (2006) for a survey of this literature.

Section 2 presents a general model of online price competition that nests standard models

ranging from Varian (1980) to Iyer et al. (2005) as special cases. The model enriches

existing models of online price competition, including Baye and Morgan (2001), by adding

two realistic features: (1) �rms pay platforms for clicks; and (2) not all clicks result in sales.

Section 3 shows how we can structurally estimate the parameters of the model using only

price data when, as is typically the case in antitrust investigations, the actual number of

competing �rms is unknown or in dispute. Section 4 reports structural estimates of the

model based on UK data for personal digital assistants, while Section 5 uses these estimates

to simulate the competitive e¤ects of horizontal mergers in this market.

Our results suggest that, at least in some instances, competitive e¤ects in online markets

are more similar to those predicted by the simple homogeneous product Bertrand model

than might be expected given the price dispersion observed in (and predicted by theoretical

models of) e-retail markets. More speci�cally, our estimates indicate that so long as two �rms

remain in the online market post merger, the average transaction price is roughly una¤ected

by horizontal mergers. However, there are potential distributional e¤ects: Our estimates

indicate that a three-to-two merger raises the average transaction price paid by price sensitive

�shoppers�by 2.88 percent, while the average transaction price paid by consumers �loyal�
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to a particular �rm declines by 1.37 percent.4 Section 6 discusses the implications of our

�ndings for market de�nition and competitive e¤ects, and highlights a number of caveats.

Finally, the Appendix contains results demonstrating that our methodology closely estimates

the parameters of the model with simulated data, as well as miscellaneous proofs.

2 Model of Online Price Competition

As discussed in the introduction, we assume that the online channel comprises the relevant

product market. To �x ideas, suppose this market consists of a commonly known number

of �rms (N > 1) that produce at a constant marginal cost of m � 0. Firms o¤er identical

products for sale through their individual websites, which may have di¤erent characteristics

or provide di¤erent types of service. Some consumers, who we call �loyals,�value these ser-

vices and purchase by directly visiting the website of their preferred �rm. Other consumers,

who we call �shoppers,�care only about price. They �rst access a price comparison site to

obtain a listing of the prices charged by sellers advertising at the site and click through to

the �rm o¤ering the lowest price. If no prices are listed, they visit the website of a randomly

selected �rm.5 All consumers have unit demand and a maximal willingness to pay of r.

It is widely recognized that conversion rates in online markets are low� only a fraction of

consumers that click on a price at a comparison site follow through by making a purchase. To

account for this, we assume that consumers are in the mood to buy with probability 
 2 (0; 1]

and in the mood to merely �look�with probability (1� 
). Thus, 
 may be interpreted as

the conversion rate� the fraction of clicks that are converted into sales. Finally, we assume

that each �rm attracts L � 0 loyals and that there are a total of S > 0 shoppers.

We now turn to the details of �rm behavior. To advertise at the comparison site, a �rm

4Armstrong (2008) points out that similar distributional e¤ects are theoretically possible in the context
of consumer protection policy, while Baye (2008) notes that this is a theoretical possibility in antitrust.

5See Proposition 1 in Baye and Morgan (2001) for the sorts of arguments required to ensure that this is
an optimal decision rule for shoppers.
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must pay an (explicit or implicit) amount � > 0 to list its price, plus a cost per click (CPC)

of c � 0 each time a consumer clicks on its price advertisement (listing). Thus, �rm i�s

strategy consists of a continuous pricing decision (pi) and a zero-one decision to advertise its

price at the comparison site. Let �i denote the probability that �rm i chooses to advertise

on the comparison site. A �rm that does not advertise its price on the comparison site

avoids paying listing and clickthrough fees, but at the potential cost of failing to attract the

shoppers visiting the comparison site.

When platform fees are not too high, there is an active market for listings at the compar-

ison site. For this case, we characterize the symmetric equilibrium pricing and advertising

strategies of �rms competing in this online environment (see Appendix A for a proof).

Proposition 1 Suppose 0 < � < S
�
(r �m) 
N�1

N
� c
�
and 0 � c < (r �m) 
N�1

N
: Then in

a symmetric Nash equilibrium:

(a) Each �rm lists its price on the comparison site with probability

�� = 1�
 

�

S
�
(r �m) 
N�1

N
� c
�! 1

N�1

2 (0; 1)

(b) Conditional on listing a price at the comparison site, a �rm�s advertised price may

be viewed as a random draw from

F � (p) =
1

��

0@1� (r � p) 
L+ N�
((r�m)
(N�1)�Nc) ((r �m) 
 � c)

S ((p�m) 
 � c)

! 1
N�1
1A (1)

on [p0; r] ; where p0 = m + 1
(S
+L
)

�

L (r �m) + N�

((r�m)
(N�1)�Nc) ((r �m) 
 � c) + Sc
�
2

(m; r) :

(c) A �rm that does not advertise on the comparison site charges a price of pi = r on its

own website.

(d) Each �rm earns expected pro�ts of

E� = (r �m) 
L+
�

N
�
1� c

(r�m)


�
� 1
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Notice that this model extends the original Baye and Morgan (2001) model to an environ-

ment in which all transactions take place online, and accounts for clickthrough fees as well

as conversion rates that are potentially less than unity. Consistent with the empirical litera-

ture, the model implies that prices listed at the comparison site are necessarily dispersed in

equilibrium, and that the number of �rms actually listing prices at the comparison site on

any given date is generally less than the total number of �rms in the market.6 This model

nests a variety of other models as special cases, including Rosenthal (1980), Varian (1980),

Narasimhan (1988), Iyer and Pazgal (2003), Baye, et al. (2004), and Iyer, et al. (2005).

Unlike some of these special cases, the general model is �exible enough to allow di¤ering

e¤ects of mergers on consumer welfare.7

Under the maintained hypothesis that �rms� listed prices are distributed according to

equation (1), it is, in principle, possible to estimate the underlying parameters of the model.

Unfortunately, data from price comparison sites reveal A; the realized number of �rms choos-

ing to list prices at the site at a given time, but not N; the total number of �rms in the

market. The model indicates that A is a binomially distributed random variable with para-

meters (�;N) whereas N is a constant. The extant literature mostly �nesses this problem.

For example, Baye, Morgan and Scholten (2006) as well as Moraga-Gonzalez and Wilden-

beest (2008) use the number of observed prices as a proxy for N; in e¤ect assuming that

N = A: Hong and Shum (2006) assume that N = +1 in their identi�cation of price disper-

sion models.

The problem of the unobservability of N presents econometric challenges, especially when

it varies over time or across products. Perhaps more importantly, it poses a serious problem

for performing competitive e¤ects analysis of mergers where the number of �potential�com-

petitors is often disputed by the antitrust agency and the merging parties. The next section

6See Baye et al. (2006) for a survey of about twenty studies documenting price dispersion of 10 to 50
percent in online markets.

7For instance, the Rosenthal model implies that when there are two or more competitors, average prices
paid by all consumers rise with the number of competing �rms.
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o¤ers a two-step estimation procedure that explicitly accommodates the unobservability of

N .

3 Identi�cation and Estimation

The above model of online price competition is essentially a low-bid auction in which the �rm

o¤ering the lowest price secures the price sensitive shoppers when it lists on the comparison

site. As such, we can adapt the techniques of structural estimation of auction models to our

setting. Speci�cally, in this section we show that the equilibrium distribution of prices in

Proposition 1 (along with one additional but rather mild condition) implies the identi�cation

conditions for standard auctions pioneered by Hu (2008) and An, Hu and Shum (2010).

Following these authors, suppose the maximum number of (potential) �rms is K, and

is known to the econometrician. The actual number of �rms (N > 1), which may vary,

is common knowledge to the �rms but unknown to the econometrician. For reasons that

will become clear, consider only dates in which two or more �rms listed prices, and let A

denote the number of price listings on a given date. For these dates, randomly select one of

the listed prices. Partition prices into K � 1 bins, and let Z denote a discretization of the

randomly selected price. Thus, Z = K � i means that the randomly selected price lies in

the ith highest bin.

From the econometrician�s point of view: (a) N;A; and Z share the same support

f2; :::; Kg; (b) r;m; �; 
; L; and S are unknown parameters; and (c) N is unobservable or in

dispute.8 If we let � � (r;m; �; 
; L; S), then under the hypothesis that the price data at the

comparison site are generated according to F � in equation (1), we may write the underlying

(undiscretized) distribution of prices as F (pjN) and the associated density as f (pjN) :9 The

lemma below shows that the equilibrium density of listed prices is independent of A and Z:

8In the application that follows, the cost-per-click (c) is data and hence is not included in the set of
parameters to be estimated.

9To ease the notational burden, we have suppressed � in this notation.
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Lemma 1 f(pjN) = f(pjA;Z;N):

Proof. Follows directly from the fact that �rms�prices are determined prior to their knowing

realizations of A and Z:

Next, notice that, given the data and the model, conditional on the fact that at least two

�rms list prices the probability that exactly A �rms list at the comparison site is

g (AjN) =
�
N
A

�
(�)A (1� �)N�A

1� (1� �)N �N� (1� �)N�1
for all N � A � 2

It immediately follows that

Lemma 2 g (AjN) = g (AjZ;N)

Lemma 1 implies that auxiliary variables A and Z only a¤ect the equilibrium density of

prices through the unobservable number of �rms, N . Analogously, Lemma 2 implies that

the instrument Z a¤ects the number of listed prices only through N .

Let h (p;A; Z) denote the observed joint density of p;A and Z. Let  (N;Z) denote the

joint density of N and Z, which is unobserved because N is unobserved. This speci�cation

allows for the possibility that the true number of �rmsN might vary across products and over

time without placing parametric restrictions on the data-generating process in this respect.

Now, the law of total probability implies the following relationship between the observed

and latent densities:

h (p;A; Z) =

KX
N=2

f(pjN;A;Z)g(AjN;Z) (N;Z)

=

KX
N=2

f(pjN)g(AjN) (N;Z); (2)

where the second equality follows from Lemmas 1 and 2.

De�ne:

Hp;A;Z = [h(p;A = i; Z = j)]i;j

GAjN = [g (A = ijN = k)]i;k

	N;Z = [ (N = k; Z = j)]k;j
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and

FpjN =

0BBBB@
f(pjN = 2) 0 0

0 ::: 0

0 0 f(pjN = K)

1CCCCA (3)

All of these are K � 1-dimensional square matrices. Then equation (2) may be written in

matrix notation as:

Hp;A;Z = GAjNFpjN	N;Z (4)

Next, consider the observed joint density of A and Z: Again, the law of total probability

together with Lemma 2 implies that

b(A;Z) =
KX
N=2

g(AjN) (N;Z) (5)

or, using matrix notation analogous to that above,

BA;Z = GAjN	N;Z (6)

Identi�cation requires that the following rank condition be satis�ed:

Condition 1 Rank (BA;Z) = K � 1.

Since both A and Z are observable, Condition 1 may be veri�ed from the data. Equation

(6) implies

Rank (BA;Z) � min
�
Rank

�
GAjN

�
;Rank (	N;Z)

	
; (7)

and hence, Condition 1 implies that GAjN and 	N;Z are invertible. This induces our key

identifying equation:

Hp;A;Z (BA;Z)
�1 = GAjNFpjN

�
GAjN

��1
(8)

The matrix on the left-hand side can be formed from the data. The right-hand side matrix

represents an eigenvalue-eigenvector decomposition of the left-hand side matrix since FpjN is

diagonal (cf. equation (3)). This representation allows us to estimate the unknown matrices

FpjN and GAjN .

The theory model implies:
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Lemma 3 The eigenvalue-eigenvector decomposition in equation (8) is unique.

Proof. Since, for all N; the distribution of equilibrium prices contains a common interval in

the neighborhood of r, it then follows that for any i; j 2 N , the set f(p) : f(pjN = i) 6= f(pjN = j)g

has nonzero Lebesgue measure whenever i 6= j. This immediately implies the uniqueness of

the eigenvalue-eigenvector decomposition.

With Lemma 3 in hand, it then follows that an eigenvalue decomposition of the observed

Hp;A;Z (BA;Z)
�1 matrix recovers the unknown FpjN and GAjN matrices. Here, FpjN is the

diagonal matrix of eigenvalues, while GAjN is the corresponding matrix of eigenvectors. Of

course, FpjN and GAjN are only identi�ed up to a normalization and ordering of the columns

of the eigenvector matrix GAjN . There is a clear, appropriate choice for the normalization of

the eigenvectors because each column of GAjN should add up to one. The model also implies

a natural ordering for the columns of GAjN , since in the model A � N with probability

one. This implies that for any i < j 2 N , g (A = jjN = i) = 0. In other words, GAjN is

an upper-triangular matrix, which, since it is invertible, has non-zero diagonal entries, i.e.

f (A = ijN = i) > 0 for all i 2 N :

Finally, having recovered GAjN ; from equation (6) ; we have

	N;Z =
�
GAjN

��1
BA;Z

and hence 	N;Z is also recovered. To summarize, we have shown:

Proposition 2 Suppose Condition 1 holds. Then FpjN , GAjN and 	N;Z are identi�ed (with

FpjN pointwise in p).

We now describe how one may use the identi�cation argument to estimate the model,

given data from a price comparison site. Let t index each set of price observations. For each

t, we observe At, the number of �rms choosing to list their prices at the comparison site.

Let pit; i = 1; : : : ; At denote the At listed prices of product i. Our estimation procedure
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accounts for the fact that Nt is known to the competing �rms at time t but is, in e¤ect, a

random variable from the perspective of the econometrician. While we cannot recover the

speci�c value of Nt pertaining to each set of prices at each point in time, we are able to

recover its marginal distribution.

To estimate the vector of parameters �, we use the following two-step estimation proce-

dure: In the �rst step, we use our key equation (8) to nonparametrically estimate GAjN . In

the second step, based on the parametric form of F (pjN ; �) in equation (1) and the estimation

in the �rst step, we recover the vector of parameters � by MLE.

Step One We �rst describe how to use observable data on prices (p) and the number of

listing �rms (A) to estimate GAjN . Our methodology closely parallels the approach taken in

An, Hu and Shum (2010). While the key identi�cation equation (2) is stated in terms of the

joint density h (p;A; Z) ; faster convergence is achieved if instead we take the expectation

over all prices given (A;Z) : Speci�cally, let E[pjA;Z] =
R
ph(p;A;Z)
b(A;Z)

dp; i.e. the expected price

conditional on some realization A; Z: It then follows from equation (8) that

E [pjA;Z] b (A;Z) =
KX
N=2

E [pjN ]� g(AjN) (N;Z)

where E[pjN ] =
R
pf (pjN) dp:

Now de�ne the matrices:

HEp;N;Z � [E (pjA = i; Z = j) b(A = i; Z = j)]i;j ; (9)

and

FEpjN �

0BBBB@
E [pjN = 2] 0 0

0 ::: 0

0 0 E [pjN = K]

1CCCCA :

Then, we have

HEp;A;Z = GAjNFEpjN	N;Z
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which is analogous to equation (4) : Similarly, we can obtain the estimating equation by

postmultiplying both sides of this equation by B�1
A;Z . This yields the analogous identi�cation

equation:

HEp;A;Z (BA;Z)
�1 = GAjNFEpjN

�
GAjN

��1
(10)

Consequently,

GAjN = �
�
HEp;A;Z (BA;Z)

�1� ;
where � (�) denotes the mapping from a square matrix to its eigenvector matrix.10 Following

Hu (2008), we may estimate the relevant matrices using sample averages:

bGAjN � �

� bHEp;A;Z

� bBA;Z��1� ; (11)

where bHEp;A;Z =

24 1
T

X
t

1

Aj

AjX
i=1

pit1(At = Aj; Zt = Zk)

35
j;k

: (12)

Finally, let g (A) be a vector of marginal probabilities over the number of listings and let

�N denote the vector of the unknown frequency distribution of N . Then

g (A) = GAjN�N

and we may estimate the unknown distribution �N using the data as follows:

b�N = � bGAjN��1 ĝ (A) (13)

where ĝ (A) denotes the empirical frequency of the number of listings.

Step Two In the �rst step, we obtained estimates of GAjN and �N nonparametrically. In

the second step, we combine these estimates with the equilibrium restrictions on the price

distribution from Proposition 1 to obtain estimates of the model�s structural parameters, �.

10Note that if the distribution of listed prices is such that the average price is monotonically ordered in N ,
then an analog of Lemma 3 holds for expected prices as well. This guarantees that � is a unique mapping.
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Let l (p;A; �) denote the joint density of prices and number of listings, and let � (N)

represent the unknown frequency distribution of N . In equilibrium, A and p are independent

conditional on N . Thus, this density may be written as

l(p;A; �) =
KX
N=2

g(AjN)f(pjN ; �)� (N)

= eAGAjNFpjN ;��N

where eA = (0; 0; :::; 1; :::; 0) is a row vector where the 1 appears as the Ath element. Hence

the likelihood function L for the t-th set of prices is

L =

AtY
i=1

l(pi; At; �)

=
AtY
i=1

eAtGAtjNFpijN ;��N

Using the �rst step estimates, we can write this as

lnL = lnbl(pi; At; �)
=

AtX
i=1

ln
�
eAt bGAtjNFpijN ;�b�N� (14)

where FpijN ;� is a diagonal matrix with diagonal element f (pjN ; �) : From equation (1) ; it

may be shown that the density associated with F � (p) is given by

f � (pjN ; �) =
1

N � 1

�
F � (pjN ; �)� 1

��

�
�
 


L

(r � p) 
L+ N�
((r�m)
(N�1)�Nc) ((r �m) 
 � c)

� 


(p�m) 
 � c

!

for p 2 [p0; r] and zero otherwise. Note that bGAtjN and b�N are estimated using the data,

whereas FpijN ;� is based on the theory model (we have added � to the subscript of FpijN to

emphasize the dependence on �; which will be selected so as to maximize the likelihood

function).11

11We do not estimate c because we have data on clickthrough fees, as discussed below.
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4 Data and Parameter Estimates

We apply the above estimation procedure to UK online price data obtained from Kelkoo.com

for �rms selling personal digital assistants. These data, which are described in detail in Baye

et al. (2009), include the daily transactions prices (inclusive of taxes and shipping) charged

by �rms selling 18 models of personal digital assistants (PDAs) over the period from 18

September 2003 through 6 January 2004. During this period, an average of four �rms sold

each product at the comparison site, so on the surface this market might appear to be fairly

concentrated. Our estimation is based on clickthrough fees at Kelkoo.com of c = :20 (20

pence per click).

Our data consists of 1; 591 product-dates. For 1; 229 of these product-dates, two or more

�rms listed prices, and we use these data in the estimation. Since our estimation procedure

requires a large number of observations, we pool across all 18 products in both the �rst and

second step of our estimation procedure to estimate a common parameter vector, �. Owing

to a paucity of observations where the number of listings exceeds 10, we combine observations

where more than 10 �rms list prices into a single bin.12 Hence, GAjN is a 10� 10 matrix for

purposes of estimation, with the �rst 9 columns corresponding to N = 2; :::10 and the last

bin corresponding to N > 10.13 Appendix B demonstrates that despite our limited sample

size and the consequent need to pool over certain values of N and A, our procedure works

well at recovering the deep structural parameters of the model with simulated data.

Table 1 reports the results of the �rst-stage estimation. Each cell in the table corresponds

to the estimated probability (in the data used) that there are A �rms listing prices on the

comparison site when the population of �rms isN . Although the estimation procedure places

no constraints requiring that the resulting estimates are well-de�ned probabilities, Table 1

reveals that the resulting estimates do, in fact, have this property.

12The maximum number of listings observed is 15.
13Baye and Morgan (2009) show that in an analogous model, the equilibrium price distribution as N !1

is similar to that for �nite values of N near the lower end of this last bin.
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We now turn to the step 2 results. Recall that c is known data and not a parameter

to be estimated. Following Baye and Morgan (2001), we set L � M=N , so that M (the

parameter to be estimated) represents the total number of loyal consumers in the market,

and L is the (unobserved) number of loyals per �rm on a given product-date. The resulting

parameter estimates, along with bootstrapped standard errors, are reported in Table 2. The

monetary parameters (r;m and �) are denominated in GBP. As the table reveals, all of

the parameters are precisely estimated. One potential concern is that likelihood function in

equation (14) depends on an estimated GAjN matrix that uses only observations where two

or more �rms listed prices. Lemma 1, however, implies f (pjN;A � 2; �) = f (pjN ; �); thus,

our estimates of � remain consistent even with this restriction. Another potential worry is

small sample properties of the estimates; Appendix B provides simulation results showing

that the approach performs well even when the sample size is modest, as it is here.

The parameter estimates in Table 2 indicate that, on an average day, a total ofM = 26:04

consumers in the UK who are loyal to some online �rm were interested in purchasing a

PDA online, while S = 13:16 consumers were interested in purchasing online from the �rm

charging the best price. These estimates imply that about 34 percent of consumers in this

online market are price-sensitive shoppers, while 66 percent are loyals. It is interesting to

contrast our estimates with those of Brynjolfsson, Montgomery, and Smith (2003), who �nd

that around 13% of consumers in US e-retail markets are shoppers. Given the relatively less-

developed state of e-retail in the UK compared to the US at the time our data was collected,

it is not altogether surprising to �nd that fewer UK customers had become �attached�to a

particular online retailer.

The estimated conversion rate, 
 = :15, implies that a �rm listing on Kelkoo.com has to

receive, on average, 6.67 clicks in order to generate one sale. At a cost of 20 pence per click,

this translates into an average cost per sale of 1.33 GBP in addition to the �xed listing fee of

� = 4:88 GBP. Finally, notice that the estimated monopoly markup for a PDA, (r �m) =m;
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is about 66 percent.

5 Competitive E¤ects Analysis

The econometric framework described above, along with the structural estimates of the

model of online price competition, permits us to address a number of issues that arise in

the evaluation of the competitive e¤ects of a potential horizontal merger of online �rms.

As discussed above, the data obtained from Kelkoo.com might lead one to conclude that

the PDA market on Kelkoo.com is highly concentrated, since only four �rms list prices for

a given product on an average day. The heart of many disagreements between antitrust

agencies and merging parties centers around the �correct�number of potential competitors

in the relevant market, as well as the �correct�de�nition of the relevant market to use in

conducting an analysis of the merger. In the case at hand, discussions between parties and

the agency would involve the extent to which other retailers� those not presently listing at

the site or utilizing other platforms (such as other comparison sites, pure-play brick and

mortar �rms, or the websites of individual �rms)� should be included in the set of potential

competitors. It is, of course, costly for parties and agencies to document the exact number of

competitors in the market at the time of a proposed merger, to obtain historical information

on the number of competitors and to predict potential entry. Our econometric framework

permits us to recover deep structural parameters without this information.

Of course, were the UK e-retail market well-approximated by the homogenous product

Bertrand model of competition, uncertainty regarding the number of �rms would be moot

for purposes of merger analysis. So long as at least two �rms remain in the market post-

merger, consolidation produces no unilateral competitive e¤ects. This begs the obvious

question� is Bertrand competition a good model for this UK e-retail market? Recall that a

key implication of the homogeneous product Bertrand model is the law of one price. This

prediction, however, is grossly at odds with a number of studies that have documented price
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ranges of 30 to 50 percent for �identical�products; see Baye, Morgan, and Scholten (2006)

for a survey. Moreover, the degree of price dispersion is known to vary with the number of

�rms in the market. Thus, one might expect a merger to impact price dispersion, market

power, and consumer welfare.14 Our structural approach permits us to quantify competitive

e¤ects with limited data, as is the case when an antitrust agency does not wish to burden

third parties with signi�cant data requests.

To accomplish this, we �rst substitute the parameter estimates reported in Table 2 into

the expressions summarizing equilibrium behavior in Proposition 1; below we use carets to

denote the resulting estimates. Next, we calculate the implied average prices conditional on

a given number of �rms and display them in Table 3. Column (a) in Table 3 indicates the

total number of �rms in the relevant market (N), which is potentially in dispute. Column

(b) provides the estimated average price listed at the comparison site conditional on di¤erent

numbers of competitors, where the average listed price is

E [p] =

Z br
bp0 pd

cF � (p) :
As would be expected, Table 3 shows that the estimated average listed price declines as the

number of �rms increases� rather abruptly as one moves from monopoly to a duopoly, and

modestly thereafter. Column (c) reports the estimated average minimum listed price, which

is given by

E [pmin] =
1

1�
�
1�c���N

NX
A=1

�
N

A

��c���A �1�c���N�A Z br
bp0 pA

�
1� cF � (p)�A�1 dcF � (p)

Notice that this calculation takes into account the e¤ect of a change in N on the equilibrium

distribution of prices, �rms�propensities to advertise prices at the comparison site, and the

impact of a larger number of listings on the minimum order statistic. Accounting for this,

Column (c) of Table 3 shows that the estimated average minimum listed price also declines

as the number of �rms increases.
14See Baye, et al. (2004) for evidence of the relationship between various measures of price dispersion and

the number of competing e-retail �rms.
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While it might be tempting to base competitive e¤ects analysis on these average prices

(presuming the average prices are relevant for loyals and the average minimum prices are

relevant for shoppers), this would be incorrect: Neither of these averages represents average

transaction prices. To calculate the average transaction price paid by loyals, one needs to

account for a �rm�s propensity to list prices on the comparison site. In particular, when a

�rm does not list on the comparison site, it charges the monopoly price at its own website.

Thus, the average transaction price paid by a loyal customer is

E
�
pL
�
=c��E [p] + �1�c��� br:

Column (d) of Table 3 reports the estimated average transaction prices of loyal consumers.

Notice that it declines abruptly as one moves from monopoly to duopoly, but then rises as

the number of �rms increases further.

Likewise, the average transaction price for shoppers must also account for listing decisions:

The average transaction price paid by a price-sensitive shopper is given by

E
�
pS
�
=

�
1�

�
1�c���N�E [pmin] + �1�c���N br

Column (e) of Table 3 reports the estimated average transaction price of shoppers, which

declines as the number of �rms increases.

Columns (d) and (e) highlight that shoppers and loyals are impacted di¤erently by height-

ened competition: So long as there are at least two �rms in the market, loyal consumers are

harmed by heightened competition, while shoppers are unambiguously made better o¤ by

increased competition. The overall transaction price, reported in Column (f) of Table 3, is

merely a weighted average of the shoppers�and loyals�estimated transaction prices, where

the weighting factor is determined by the estimated fraction of consumers who are shoppers

and loyals:

E
�
pT
�
=

cMbS + cME
�
pL
�
+

bSbS + cME
�
pS
�
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In summary, the estimates in Table 3 reveal that the average listed price and the average

minimum listed price both decline as the number of �rms declines. This is consistent with

standard reasoning, which suggests that heightened competition leads to lower prices. How-

ever, this ignores the endogenous listing decisions of �rms, which is, of course, relevant for

the transaction prices paid by consumers. Here, a more subtle story emerges. Both shoppers

and loyals pay lower average transaction prices as the online market moves from monopoly

to duopoly. Thereafter, the e¤ects of increased competition diverge: Loyal consumers are

harmed (pay higher average transaction prices) as the number of �rms further increases,

while shoppers bene�t from heightened competition.

Table 4 uses the results in Table 3 to simulate the competitive e¤ects of a merger from N

to N�1 �rms, where column (a) represents the post-merger number of �rms. Obviously, the

direction of the price changes is identical to that in Table 3, but it is instructive to examine

the implied percentage changes in prices to highlight the potential value of our methodology.

Suppose �rst that the antitrust agency and the parties agree that the appropriate welfare

standard is one that aggregates shoppers and loyals, such that the average transaction prices

displayed in column (f) of Table 4 are relevant. Then so long as there is agreement that

the merger does not result in monopoly, a merger between two online �rms will not harm

the �average� online consumer. This conclusion is based on the assumption that �rms

in the online channel do not compete against �rms in other channels. Thus, there is no

need for the agency to examine claims by the parties that �there are many potential online

�rms�or that �brick and mortar �rms are also in the relevant market.� In e¤ect, column

(f) reveals that� even though models of online competition are more complex than standard

homogenous product Bertrand competition and the �law of one price�does not hold online�

the conclusions based on our estimates are similar to what one would have concluded based

on the simple Bertrand model, at least in this particular online market: There are no adverse

competitive e¤ects of a horizontal merger in this online market so long as it stops short of
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merger to monopoly.

Notice that since our analysis takes as its maintained hypothesis that the relevant market

is the online channel, our approach is �biased�in favor of �nding competitive e¤ects. Since

the evidence suggests there are none, there would appear to be little value to an antitrust

agency (or to the parties) of expending resources collecting the additional information needed

to determine whether o­ ine �rms discipline the prices charged by online �rms.

The results in Table 4 also highlight a potential problem that could arise in the evaluation

of horizontal mergers, owing to di¤erences in price e¤ects for shoppers and loyals. Recall

that, in the estimated model, loyals never frequent the comparison site, while shoppers always

shop there �rst. As a consequence, the plot thickens when an antitrust agency opts for a

more narrowly de�ned relevant market (the price comparison site only) or focuses on harm

to a subset of consumers (shoppers only). In these circumstances, the estimates in columns

(c) and (e) of Table 4 become relevant.

Notice that column (c) represents the average price paid by a shopper that buys through

the comparison site, and this rises as the number of (post-merger) �rms shrinks. It follows

that if the agency and the parties agree that the merger is not a merger to monopoly, so

long as the agency�s tolerance for a price increase is 3 percent, there is again no value in

examining whether other channels also compete or in conducting a detailed analysis of the

actual number of �rms in the market� even if the agency�s focus is on a narrow market

de�nition that includes only transactions through the comparison site. This is because,

regardless of the actual number of �rms, there is agreement that the estimated transaction

price at the comparison site would rise by no more than 2.93% post merger.

Similarly, if the agency focused on consumer harm to one consumer group� price sensitive

shoppers� the estimates in column (e) become relevant. In this case, so long as the agency�s

tolerance for a price increase is at least 2.88% and there is agreement that at least one

competitor remains in the market post merger, there is no need for either party to spend
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resources attempting to resolve uncertainty regarding the actual number of competitors or

whether other channels are in the relevant market.

6 Discussion

Our results suggest that: (1) Online markets are less vulnerable to adverse competitive e¤ects

from horizontal mergers than one might expect given the plethora of papers documenting

signi�cant price dispersion in online markets; (2) mergers in online retail markets harm price

sensitive shoppers but help customers who are loyal to a particular �rm; and (3) the harm

to shoppers is no greater than 3 percent and is almost exactly o¤set by bene�ts to loyals.

We stress, however, that these �ndings are based on data from one e-retail market in the

UK. While the model and econometric techniques developed in this paper are useful more

generally, it would be a mistake to infer from our analysis that horizontal mergers are never

problematic in online retail markets. We conclude with some speci�c caveats and highlight

directions that we hope our framework might ultimately be stretched.

First, the econometric techniques developed in this paper are very data intensive. Among

other things, this precluded us from incorporating additional parameters to account for

downward sloping demand. While our unit demand assumption implies that overall welfare

is una¤ected by industry structure, the analysis o¤ers policy-relevant insights into the e¤ects

of online mergers on consumer welfare� the welfare standard that guides antitrust policy

in both the US and the UK. Extending the analysis to cover downward sloping demand

might impact the magnitude of e¤ects on consumer welfare, and would be especially helpful

for analyzing competitive e¤ects in Canada, which uses a total welfare standard to guide

antitrust enforcement.

Data limitations also necessitated our pooling across di¤erent PDAs. Obviously, this is

far from ideal and somewhat limits the scope for directly applying our analysis to antitrust

policy. Nevertheless, it illustrates the potential value of our techniques to antitrust agencies
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and parties, who typically do not face such data constraints in conducting competitive e¤ects

analysis.

Additionally, our structural estimation is based on a model with symmetric �rms: Firms

have identical marginal costs and numbers of loyal consumers. This implies that all �rms

reposition post merger such that they each get an equal share of the (�xed) number of loyal

consumers. As a purely theoretical matter, it is quite di¢ cult to obtain closed-form solutions

for equilibrium price distributions in the presence of asymmetries.15 For these reasons, our

competitive e¤ects analysis does not account for changes in industry structure that might

arise as a result of a �rm gaining a disproportionate share of loyals through mergers.

There are several other potential limitations of the analysis. We do not have consumer

choice data outside the price comparison site; thus we are relying entirely on the theory model

and structural estimation to infer the total number of loyal consumers in the market. We are

also using �rm pricing behavior at the comparison site to infer pricing behavior at the �rms�

own websites. The model ignores the possibility that a �rm might price discriminate between

consumers visiting its site directly and those routed there through the price comparison site.

In principle �rms could do this; in practice they do not (probably for reputational reasons).

Allowing for price discrimination would obviously a¤ect equilibrium pricing behavior and

estimates of competitive e¤ects.

For all of these reasons, our analysis should be viewed as a �rst step towards better

understanding the competitive e¤ects of horizontal mergers in online retail markets rather

than the �nal word on the subject.

15See Arnold et al. (forthcoming) for an asymmetric version of the Baye and Morgan (2001) model with
two �rms.
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A Proof of Proposition 1

As in Baye and Morgan (2001), it is readily seen that equilibrium has the following two key

properties: (1) A �rm must be indi¤erent between listing its price at the clearinghouse or

not; and (2) a �rm must earn the same expected payo¤ from posting any price p 2 [p0; r] at

the clearinghouse.

A �rm that eschews the comparison site earns pro�ts of

�0 = (r �m) 
L+ (r �m) (1� �)N�1

S

N
(15)

A �rm that advertises a price r on the site earns

� = (r �m) 
L+ (r �m) (1� �)N�1 
S � c (1� �)N�1 S � �

Since �rms must be indi¤erent between listing or not, it then follows that � = �0: We may

use this equality to obtain a closed-form expression for �:

(r �m) 
L+(r �m) (1� �)N�1

S

N
= (r �m) 
L+(r �m) (1� �)N�1 
S�c (1� �)N�1 S��

Simplifying, this reduces to

� = (1� �)N�1 S

�
(r �m) 


N � 1
N

� c

�
Or equivalently,

(1� �)N�1 =
�

S
�
(r �m) 
N�1

N
� c
�

=
N�

S ((r �m) 
 (N � 1)�Nc)

Hence, the equilibrium advertising propensity is:

�� = 1�
 

�

S
�
(r �m) 
N�1

N
� c
�! 1

N�1

(16)

The conditions on � and c identi�ed in Proposition 1 imply that �� 2 (0; 1).
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Substituting for �� in equation (15) ; we obtain equilibrium pro�ts of :

�0 = (r �m) 
L+ (r �m)
�

S
�
(r �m) 
N�1

N
� c
� 
S
N

= (r �m) 
L+
�

N
�
1� c

(r�m)


�
� 1

It remains to determine the equilibrium distribution of listed prices. Recall that a �rm

listing a price p; earns expected pro�ts of

� (p) = (p�m) 
L+ (p�m) (1� �F (p))N�1 
S � c (1� �F (p))N�1 S � �

Such a �rm must be indi¤erent between charging p and not advertising at all, i.e. � (p) = �0.

It is convenient to express �0 in terms of � for the moment. Hence, we have:

� (p) = (p�m) 
L+ (p�m) (1� �F (p))N�1 
S � c (1� �F (p))N�1 S � �

= (r �m) 
L+ (r �m) (1� �)N�1

S

N
= �0

Solving this expression for (1� �F (p))N�1, we obtain

(1� �F (p))N�1 =
(r � p) 
L+ (r �m) (1� �)N�1 
S

N
+ �

S ((p�m) 
 � c)

=
(r � p) 
L+ N�

((r�m)
(N�1)�Nc) ((r �m) 
 � c)

S ((p�m) 
 � c)

which implies

F (p) =
1

�

0@1� (r � p) 
L+ N�
((r�m)
(N�1)�Nc) ((r �m) 
 � c)

S ((p�m) 
 � c)

! 1
N�1
1A

To verify that F (p) is a well-de�ned atomless probability distribution, we will �rst show

that F (r) = 1; or equivalently, (1� �F (r))N�1 = (1� �)N�1. To see this, note that

(1� �F (r))N�1 =

N�
((r�m)
(N�1)�Nc) ((r �m) 
 � c)

S ((r �m) 
 � c)

=
N�

S ((r �m) 
 (N � 1)�Nc)

= (1� �)N�1
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where � is de�ned in equation (16) :

Next, we determine the lower support of the equilibrium listed price distribution; that is

p0; where F (p0) = 0: Equivalently, p0 satis�es (1� �F (p0))
N�1 = 1; or

(r � p0) 
L+
N�

((r�m)
(N�1)�Nc) ((r �m) 
 � c)

S ((p0 �m) 
 � c)
= 1

Cross-multiplying and collecting the p0 terms:


Lr +
N�

((r �m) 
 (N � 1)�Nc)
((r �m) 
 � c) + S
m+ Sc = p0 (S
 + L
)

Solving for p0 gives

p0 = m+
1

(S
 + L
)

�

L (r �m) +

N�

((r �m) 
 (N � 1)�Nc)
((r �m) 
 � c) + Sc

�
which exceeds m:

Finally, we verify that F is strictly increasing, or equivalently, that (1� �F (p))N�1 is

strictly decreasing in p: Recall that

(1� �F (p))N�1 =
(r � p) 
L+ N�

((r�m)
(N�1)�Nc) ((r �m) 
 � c)

S ((p�m) 
 � c)

and de�ne num � (r � p) 
L+ N�
((r�m)
(N�1)�Nc) ((r �m) 
 � c) > 0 and den � S ((p�m) 
 � c) >

0. Di¤erentiating with respect to p reveals

@ (1� �F (p))N�1

@p
= �
L (den) + S
 (num)

(den)2
< 0

B Simulation

We report results of a simulation study demonstrating that our estimation procedure per-

forms well in a controlled, small-sample environment that mirrors that analyzed in the paper.

Taking the �true�parameter values
�
�True

�
to be the estimates reported in column (b) of

Table 2, we construct a simulated dataset based on the underlying theoretical model as

follows.
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For each simulated period, t, we randomly draw a number of �rms for that period,

Nt 2 f2; 3; :::; 15g from a discrete uniform distribution. Notice that the upper bound of this

distribution corresponds to the maximum number of listings we observed across all product-

dates in the actual data. Next, we make Nt Bernoulli draws with parameter ��(Nt; �
True)

(de�ned in Proposition 1) to simulate whether each of these Nt �rms listed or not. Let At

denote the number of �rms listing prices in simulated period t. For each of these At �rms,

we next draw a listed price from the distribution F �(pjNt; �True) de�ned in Proposition 1.

Following the estimation procedure in the paper, we retain data for this simulated period

only if At � 2. We repeat this process until we have retained exactly 1; 229 simulated

periods� the sample-size used in our actual estimation in the text.

Next, following the approach in the paper, we pool simulated observations where At �

11 into a single bin, and use the simulated data to estimate the model via our two-step

estimation procedure. These estimates are presented in Table A1, along with standard

errors obtained via bootstrapping (with 200 resamples employed). As Table A1 reveals, the

parameters are precisely estimated, and very close to the true values.
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Table  1:  Estimated  G A/N   Matrix 

Number of Number of Firms (N )
Listings (A ) 2 3 4 5 6 7 8 9 10 > 10

           
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

2 1.0000 0.9068 0.7141 0.7526 0.6775 0.3143 0.7010 0.6528 0.2585 0.2532
3 0 0.0932 0.2358 0.1311 0.1180 0.1425 0.0458 0.0427 0.1245 0.1220
4 0 0 0.0501 0.0459 0.0413 0.1293 0.0002 0.0002 0.1749 0.1713
5 0 0 0 0.0704 0.0634 0.1517 0.1172 0.1092 0.1381 0.1353
6 0 0 0 0 0.0998 0.1243 0.0225 0.0209 0.1040 0.1018
7 0 0 0 0 0 0.1380 0.0939 0.0874 0.1077 0.1055
8 0 0 0 0 0 0 0.0194 0.0181 0.0419 0.0411
9 0 0 0 0 0 0 0 0.0687 0.0279 0.0273

10 0 0 0 0 0 0 0 0 0.0225 0.0221
> 10 0 0 0 0 0 0 0 0 0 0.0205



Table  2:  Parameter  Estimates  and  Bootstrapped  Standard  Errors

Parameter Estimate Standard Error
    

(a) (b) (c)

φ 4.88 0.109
r 415.26 85.097

m 250.09 17.651
M 26.04 1.742
S 13.16 0.574
γ 0.15 0.004



Table  3:  Estimated  Transaction  Prices

Estimated Avg. Estimated Avg. Estimated Avg.
Number of Estimated Avg. Minimum Transaction Price Transaction Price Estimated Avg.

Firms Listed Price Listed Price Loyals Shoppers Transaction Price
      

(a) (b) (c) (d) (e) (f)

1 415.26 415.26 415.26 415.26 415.26
2 366.57 354.60 368.06 354.65 363.56
3 365.71 344.49 373.19 344.73 363.64
4 363.23 336.43 377.40 336.87 363.79
5 360.46 329.93 380.79 330.53 363.92
6 357.77 324.59 383.56 325.33 364.01
7 355.25 320.11 385.87 320.96 364.08
8 352.92 316.29 387.84 317.25 364.14
9 350.76 312.99 389.53 314.03 364.18

10 348.77 310.10 391.00 311.23 364.22
11 346.93 307.56 392.30 308.75 364.25
12 345.22 305.30 393.45 306.54 364.27
13 343.63 303.26 394.48 304.57 364.30
14 342.14 301.43 395.41 302.78 364.31
15 340.75 299.77 396.25 301.16 364.33



Table  4:  Percentage  Change  in  Post-Merger  Transaction  Prices

Estimated Change Estimated Change
Estimated Change Estimated Change in Average in Average Estimated Change

Number of in Average in Avg. Minimum Transaction Price Transaction Price in Average
Firms Listed Price Listed Price Loyals Shoppers Transaction Price

      
(a) (b) (c) (d) (e) (f)

1 13.28 % 17.11 % 12.82 % 17.09 % 14.22 %
2 0.24 2.93 -1.37 2.88 -0.02
3 0.68 2.40 -1.12 2.34 -0.04
4 0.77 1.97 -0.89 1.92 -0.03
5 0.75 1.65 -0.72 1.60 -0.03
6 0.71 1.40 -0.60 1.36 -0.02
7 0.66 1.21 -0.51 1.17 -0.02
8 0.61 1.05 -0.43 1.02 -0.01
9 0.57 0.93 -0.38 0.90 -0.01

10 0.53 0.83 -0.33 0.80 -0.01
11 0.50 0.74 -0.29 0.72 -0.01
12 0.46 0.67 -0.26 0.65 -0.01
13 0.43 0.61 -0.24 0.59 -0.01
14 0.41 0.56 -0.21 0.54 0.00



Parameter "True" Value Estimate Standard Error
   

(a) (b) (c) (d)

φ 4.88 4.10 1.831
r 415.26 421.68 25.868
m 250.09 258.94 46.814
M 26.04 25.33 3.236
S 13.16 9.20 5.205
γ 0.15 0.14 0.081

Table  A1: Simulation Parameter  Estimates  and  Standard  Errors
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